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Abstract

Continuous vital signs monitoring with wearable systems may improve early recognition of patient deterioration on
hospital wards. The objective of this study was to determine whether the wearable Checkpoint Cardio’s CPC12S, can
accurately measure heart rate (HR), respiratory rate (RR), oxygen saturation (SpO2), blood pressure (BP) and temperature
continuously. In an observational multicenter method comparison study of 70 high-risk surgical patients admitted to high-
dependency wards; HR, RR, SpO2, BP and temperature were simultaneously measured with the CPC12S system and with
ICU-grade monitoring systems in four European hospitals. Outcome measures were bias and 95% limits of agreement
(LoA). Clinical accuracy was assessed with Clarke Error Grid analyses for HR and RR. A total of 3,212 h of vital signs
data (on average 26 h per patient) were analyzed. For HR, bias (95% LoA) of the pooled analysis was 0.0 (-3.5 to 3.4),
for RR 1.5 (-3.7 to 7.5) and for SpO2 0.4 (-3.1 to 4.0). The CPCI12S system overestimated BP, with a bias of 8.9 and
wide LoA (-23.3 to 41.2). Temperature was underestimated with a bias of -0.6 and LoA of -1.7 to 0.6. Clarke Error Grid
analyses showed that adequate treatment decisions regarding changes in HR and RR would have been made in 99.2% and
92.0% of cases respectively. The CPC12S system showed high accuracy for measurements of HR. The accuracy of RR,
SpO2 were slightly overestimated and core temperature underestimated, with LoA outside the predefined clinical accept-
able range. The accuracy of BP was unacceptably low.
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1 Introduction

Hospitalized patients can die because early signs of deterio-
ration are missed [1]. Adverse events and complications are
usually preceded by abnormal vital signs [2—6] providing
opportunities for earlier recognition and timely interven-
tion. Recent studies show that more than 80% of hyoxemic
and hypotensive events are missed by intermittent moni-
toring [7-9], routinely performed once every four to eight
hours in hospitalized patients worldwide. Furthermore,
early warning scores (EWS) are often incomplete [10—12]
or not recorded at all, indicating an unfilled need for bet-
ter monitoring of vital signs on general hospital wards to
improve patient outcomes [13, 14].

Over the past decade, many wireless wearable con-
tinuous monitoring solutions have emerged, specifically
designed for ‘low-care’ environments. Continuous moni-
toring systems in combination with predictive models have
been reported to facilitate automated recognition of clini-
cal deterioration, diminish the need for Intensive Care Unit
(ICU) transfer [11, 12, 15], reduce length of hospital stay
and improve survival [14]. However, most wireless vital
signs monitors are only capable of measuring a subset of
vital signs, often limited to heart rate (HR), respiratory rate
(RR) and temperature. Time-consuming intermittent manual
measurements of blood pressure (BP) and oxygen saturation
(Sp02) are therefore still needed, limiting introduction of
such systems in clinical practice [16].

An ‘all-in-one’ wearable patient monitoring solution
capable of retrieving a full set of vital signs has recently
been developed in the H2020 competitive ‘Nightingale’
Pre-Commercial Procurement (PCP) program funded by
the European Commission [17]. Within this EU-funded
initiative, five European academic hospitals (Utrecht, the
Netherlands; Stockholm, Sweden; London, United King-
dom; Leuven, Belgium and Aachen, Germany) stimulated
industry to develop the next generation of wireless wear-
able sensors for continuous vital signs monitoring in clinical
practice. This Nightingale PCP program was funded since
no state of the art wireless solutions were on the market that
could measure a full set of vital signs (including BP and
Sp02) continuously both for use on regular wards as well
as at home. Within a competitive scheme, four companies
reached the stage to develop a prototype sensor system, dur-
ing which reliability and usability were tested and validated
in healthy volunteers [18]. One of these companies was
able to further improve the wearable wireless sensor system
which is evaluated in the present study. However, before
proceeding to large multicenter interventional trials study-
ing outcomes, it is crucial to validate vital sign measurement
performance in real clinical practice [19]. Such clinical vali-
dation studies have been rare and robust evidence is lacking,
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but clinical validation is now required under the European
Medical Device Regulation (MDR) 2017/745 since May 26,
2021 [20].

The objective of this study was therefore to evaluate
whether this new wearable multi-parameter sensor could
accurately measure HR, RR, SpO2, BP and temperature
continuously in high-risk patients compared to four differ-
ent standard monitoring systems in four European hospitals.
Our secondary aim was to assess clinical accuracy of mea-
surement performance and assess potential consequences
for clinical decision making.

2 Materials and methods
2.1 Study design

We conducted a multicenter clinical observational study
between November 2020 and October 2021 in which 125
high-risk surgical and medical patients were asked to wear
the multiparameter ambulatory telemonitoring system
CPC12S system ([Checkpoint Cardio Ltd, Kazanlak, Bul-
garia]) in-hospital and at home after discharge. Of these
patients, 70 could be included in the present method com-
parison study since they were simultaneously monitored
with the CPCI12S system and standard bedside monitoring
systems in the ICU, High-Dependency Unit (HDU) or Post
Anesthesia Care Unit (PACU). The study was conducted in
four large academic hospitals: University Medical Center
Utrecht, the Netherlands; Karolinska University Hospital,
Sweden; University Hospital RWTH Aachen, Germany and
Leuven University Hospital, Belgium. The study protocol
differed slightly between the centers due to organizational
and legislative differences. Therefore, there was variation
between hospitals regarding number of study patients,
observation time available for agreement analysis and sam-
pling rate of vital signs from the reference systems. HR, RR,
SpO2, BP and temperature were continuously monitored
with both the CPC12S system and standard reference moni-
toring systems. To ensure routine hospital care, treating cli-
nicians did not have access to measurement data from the
device during the study, and study personnel only accessed
the system to verify whether data was transferred. Formal
ethical approval of the study was obtained from each of
the Medical Research Ethics Committees in Utrecht (No.
20/078), Stockholm (No. 2020-04537), Aachen (No. EK
417/20) and Leuven (No. B3222020000163).

2.2 Study population and setting

Adult patients (=18 years of age) scheduled to undergo
major non-cardiac surgery or admitted for an acute medical
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condition were eligible for inclusion. These patients were
considered for enrollment because they belong to a high-risk
group more likely to experience deterioration events, with
abnormal vital parameters, compared to other patients on
general wards. Exclusion criteria were patients with pace-
maker or implantable cardioverter defibrillator, allergy to
skin adhesives, wounds near the application site or inability
to provide informed consent. All patients provided written
informed consent before enrollment. The CPC12S system
was applied, and vital sign recording started postoperatively
after admission to the ICU, HDU or PACU.

Fig. 1 The CPC12S Nightingale multiparameter monitoring system
(Checkpoint Cardio Ltd, Bulgaria). The wearable sensor attached with
two electrodes on the chest measures ECG and HR. RR is derived
using impedance pneumography. The ear sensor measures photople-
thysmogram to determine SpO2. BP is derived from pulse transit time
(PTT) using signals from both PPG and ECG. Temperature is mea-
sured by a thermistor placed in the axilla

2.3 Description of the CPC12S system

The CPC12S system is a reusable, lightweight (90 g) wear-
able sensor worn on the chest using electrodes measuring
electrocardiography (ECG), HR and RR. Both an ear sensor
measuring photoplethysmogram (PPG) for determination of
SpO2 and BP, and a temperature sensor are connected to the
chest-sensor (Fig. 1). Either a single- (Leuven, Stockholm
and Utrecht) or three-lead ECG (Aachen) were used. Body
position and movement are also registered by the sensor but
not evaluated in this study.

The sensor calculates HR by analyzing R-peaks of QRS-
complexes in the raw ECG data. RR is recorded using imped-
ance pneumography. SpO2 is determined by analyzing the
PPG waveform. BP is derived by calculating the pulse tran-
sit time (PTT) using R-peaks from the QRS complexes,
peaks in the PPG pulse waves, and timing of the second
heart-tone corresponding to the dicrotic notch, measured by
a stethoscope in the device [21, 22]. Axillary temperature is
measured by a separate thermistor placed in the axilla. All
waveforms (ECG, PPG, respiration and stethoscope signal)
are saved by the sensor system. The sensor algorithms reject
calculation of vital signs if waveform signals are invalid due
to contamination by noise. Update frequency of the indi-
vidual vital signs is every 20 s. Measurements are transmit-
ted via Bluetooth Low Energy (BLE) to an Android cell
phone (Blackview A60 pro model [Blackview, Hongkong,
China]), that is uploading the data via mobile internet or
WiFi to a secured server.

2.4 Description of the reference monitoring
systems

The following bedside monitoring systems were used as
reference systems: XPREZZON [Spacelabs Healthcare,
United States] used at UMC Utrecht, Intellivue MP50 [Phil-
ips, the Netherlands]) used by University Hospital RWTH
Aachen, Intellivue Mx800 [Philips, the Netherlands] used
at both Karolinska University Hospital and Leuven Uni-
versity Hospital. All reference systems used ECG for HR
monitoring and measured RR by thoracic impedance pneu-
mography or capnography. BP was measured invasively by
an intra-arterial catheter and SpO2 by pulse oximetry. Con-
tinuous core temperature was derived from urinary bladder
monitoring, and therefore only analyzed in patients with
a temperature catheter present. Vital signs data from each
reference system was stored every 15—60 s, except for the
reference system in Aachen that saved and transmitted one
measurement every 15 min.
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2.5 Signal analysis

Data from the CPC12S and reference systems were retrieved
in comma-separated (CSV) format and processed using
MATLAB (The MathWorks, United States). Non-physio-
logical outliers from all systems were removed: HR>250
beats per minute (bpm), RR > 60 breaths per min (brpm) and
Sp02<50%. We used mean arterial pressure (MAP) val-
ues to analyze BP and removed MAP values>180 mmHg.
Additionally, temperature readings<34 °C and >42 °C
were removed since frequent and short periods of hypo-
thermia<34 °C followed by immediate return to normo-
thermia is physiologically impossible, and likely caused by
sensor displacement. Data from the CPC12S was averaged
to once per minute (i.e., median over 60 s) and compared
to the nearest time point forward in time of each reference
system. Data from the reference system used at Karolin-
ska University Hospital (transmitted once every 15 s) was
averaged to produce paired data with CPC12S every 60 s.
Furthermore, sensor and reference data were synchronized
to ensure alignment of both time series. After synchroniza-
tion, a ‘moving’ median filter with a window of 15 min was
applied to eliminate movement artifacts.

2.6 Outcomes and statistical analysis

The primary outcome was bias and precision with 95% lim-
its of agreement (LoA) between vital signs measured by the
CPCI12S system and the reference standards. We considered
HR and RR acceptable for clinical purposes if within +10%
of the reference standard or 5 bpm or +3 brpm (whichever
is greater). For SpO2, BP and temperature we considered
the measurements acceptable if within £2%, £ 10 mmHg
or +1 °C respectively [23—25]. All data pairs derived from
the CPCI12S system and each of the reference standards
were analyzed using the Bland-Altman method for repeated
measurements [26]. The mean difference (bias) between the
CPCI12S system and reference standards, and the 95% LoA
(196 SD) were determined for each of the vital signs after
testing whether the differences were normally distributed.
In addition, LoA was calculated with a mixed effects model
(MEM) using a modification for handling repeated mea-
surements [27, 28]. The MEM involves time as a random
effect and adjusts for baseline, average value of each patient
over time and the mean measurement between the CPC12S
system and each of the reference standards for each mea-
surement. Furthermore, pooled analyses were executed to
provide combined estimates of bias and 95% LoA [29].

As secondary outcomes, Clarke Error Grid analyses were
used to evaluate clinical accuracy of measurement perfor-
mance and assess potential consequences for clinical deci-
sion making [30]. A Clarke Error Grid represents a scatterplot
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designed to evaluate the difference between a new method
and a reference standard with values assigned to zone A to
E. Zone A shows measurements within 20% o the reference
monitor; zone B contains measurements outside 20% o the
reference, but not leading to unnecessary treatment. Region
C contains measurements leading to unnecessary treatment,
region D indicates a potentially dangerous failure to detect
bradycardia/bradypnoea or tachycardia/tachypnoea, and
region E represents points where events are confused (e.g.,
bradycardia with tachycardia). Clarke Error Grid analyses
were conducted for HR and RR [26]. Measurements of BP,
SpO2 and temperature are shown in scatterplots to visualize
their accuracy.

3 Results

From the 70 patients, 3,212 h of vital signs monitoring were
available for methods comparison analyses, with a median
duration of 26 h (range 3 to 231 h) per patient. Patient char-
acteristics are summarized in Table 1. Total duration of
monitoring and average amount of monitored time differed
between centers (Table 1). Table 2 shows bias and precision
(95% LoA) of comparisons between the CPC12S system
and each of the reference standards.

3.1 Heartrate

In total, 68,148 h measurement pairs were available for
analyses in 70 patients. The overall bias was 0.0 bpm with
narrow LoA of -3.5 to 3.4 bpm, indicating high accuracy and
precision (Fig. 2a; Table 2). These results were within the
predefined acceptable range. Supplementary file 1 (Fig. 6a-
d) show Bland-Altman plots of subanalyses in each center.
Figure 3a illustrates the Clarke Error Grid analysis with data
pairs from all centers and Table 3 includes the percentage
of data pairs in region A to E for each reference standard
and the pooled results from all reference standards. Over-
all, adequate treatment decisions (zone A or B) would have
been made in 99.2% with the CPC12S system. No measure-
ments from Stockholm or Leuven, and few (0.9% or less)
from Utrecht and Aachen were within regions C, D, or E,
suggesting that very few HR measurements would result in
failure to treat, unnecessary treatment or confusion between
bradycardia and tachycardia.

3.2 Respiratory rate

A total of 61,341 RR measurement pairs were available for
analysis in 67 patients. RR-data from the reference standard
was missing in three patients. Bias (mean difference) from
the measurements in Utrecht, Stockholm and Aachen was
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Table 1 Patient characteristics (n="70)

Utrecht (n=18)  Stockholm Aachen (n=24) Leuven (n=3) All
(n=25) patients
(n=70)
Age in years, median [IQR] 68 [6] 74 (7] 62 [13] 58 [9] 69 [15]
Women, n (%) 6 (33) 17 (68) 7(29) 2 (67) 32 (46)
Surgical indication, n (%)
Major upper GI® oncological surgery 18 (100) 0(0) 19 (79) 1(33) 38 (54)
Major lower GI® oncological surgery 0(0) 23(92) 1(4) 0(0) 24 (34)
Other major surgeries (e.g., vascular surgery) 0(0) 2 (8) 4(17) 2 (67) 8 (11)
Comorbidities, n (%)
Lung disease (COPD? or asthma) 2(11) 7 (28) 0(0) 0(0) 10 (14)
Ischaemic heart disease 2(11) 6 (24) 2(8) 0(0) 10 (14)
Heart failure (including valvular diseases) 1 (6) 4(16) 0(0) 0(0) 5(7)
Atrial fibrillation 1(6) 3(12) 1(4) 0(0) 5()
Hypertension 7(39) 18 (72) 11 (44) 1(33) 37 (53)
Chronic kidney disease 2(11) 4 (16) 1(4) 0(0) 7(10)
Length of hospital stay, days median [IQR] 11[10] 7.5 (3] 17 [22] 8 [14] 11[12]
Total duration of ‘double’ monitoring, hours 936 715 1374 187 3212
Average duration of ‘double’ monitoring in hours, median 39 [49] 16 [12] 40 [86] 70 [84] 26 [53]

[IQR]

2COPD: Chronic obstructive pulmonary disease
GI: Gastrointestinal
°IQR: Inter Quartile Range

within the predefined accepted range (Table 2). Results from
a small group of patients in Leuven (n=3) overestimated
RR, with a bias of 4.1. Measurements from Stockholm and
Aachen had the narrowest LoA for RR (Table 2). The pooled
results indicate slight RR overestimation, with a bias of 1.5
brpm within the predefined range and LoA of -3.7 to 7.5
brpm. Figure 2b and Supplementary file 2 (Fig. 7a-d) show
Bland-Altman plots of all subanalyses. Table 3; Fig. 3b
show Clarke Error Grid analyses of the pooled RR-mea-
surements. Overall, adequate treatment decisions (zone A or
B) would have been made in 92.0% of all RR measurements
(Table 3). Figure 3b; Table 3 show that 16.9% of the Leuven
(n=3) comparisons were within region C, indicating poten-
tial unnecessary treatment. In comparison, only 0.2% of the
Stockholm measurements were were within region C, 1.4%
in region D, and 0% in region E, implying that very few
readings would lead to failure to treat, unnecessary treat-
ment or confusion between bradypnoea and tachypnoea.

3.3 Oxygen saturation

Sp02 data from the CPC12S system was missing in four
patients and from the reference standards in three. In the
remaining 66 patients, 51,198 SpO2 measurement pairs
were available for analysis. The pooled analysis showed
accurate results with a bias of 0.4% within the predefined
range, but the LoA (-3.1-4.0%) was outside this range
(Table 2; Fig. 2¢). In Stockholm (n=23), the CPCI12S sys-
tem showed a negative bias, with lower SpO2 readings than

the reference standard, whereas Utrecht (n=16) and Aachen
(n=24) CPCI12S slightly overestimated SpO2 readings.
Supplementary file 3 (Fig. 8a-d) illustrate Bland-Altman
plots of comparisons from each center. Figure 4a illustrates
a scatterplot of all SpO2 readings with few SpO2 readings
below 95%.

3.4 Blood pressure

In total, 55,320 measurement pairs of MAP were avail-
able for analysis in 64 patients. All MAP analyses showed
wide LoA (Table 2). Subanalyses from Utrecht (n=15)
and Aachen (n=24) indicated an acceptable bias of 1.3
mmHg and 2.6 mmHg respectively, but very low precision
with wide LoA varying from —27.1 mmHg to 32.3 mmHg.
Data from Leuven (n=3) showed that the CPC12S system
greatly overestimated MAP with a bias of 40.1 mmHg. The
pooled analysis indicated overestimation of MAP with a
bias of 8.9 mmHg and wide LoA of -23.3 to 41.2 mmHg
(Fig. 2d; Table 2). Supplementary file 4 (Fig. 9a-d) illustrate
Bland-Altman plots of data from each center. A scatterplot
of the BP readings (Fig. 4b) illustrates large variation with
both under- and overestimation, most pronounced when
MAP>80 mmHg.

3.5 Temperature

Temperature data from the reference standard was only
available in 36 patients, resulting in 19,330 measurement
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Table 2 Bland-Altman analysis of the CPC12S? system versus the reference monitor in each hospital

Number of mea- Number of Bias Lower 95%  Upper 95% Lower 95%  Upper
surement pairs ~ patients LoA® LoA® MEM*® 95%
MEM®

Heart Rate
CPC12S - Reference Utrecht 33,909 18 0.5 -14.5 15.5 -6.7 7.8
CPC12S - Reference Stockholm 29,559 25 0.3 -5.2 5.7 -2.1 2.7
CPC12S - Reference Aachen* 3,034 24 -0.8 -9.9 8.3 -5.1 3.5
CPC12S - Reference Leuven 1,646 3 -0.1 -1.2 1.1 -0.8 0.7
CPCI12S - Pooled analysis 68,148 70 0.0 -6.5 7.1 -3.5 34
Respiratory Rate
CPC12S - Reference Utrecht 28,692 18 2.8 -6.5 12.1 -3.9 9.5
CPC12S - Reference Stockholm 29,068 25 1.2 -4.0 6.3 -4.2 6.6
CPC12S - Reference Aachen* 2,626 21 1.2 -5.8 8.1 -2.6 49
CPCI12S - Reference Leuven 955 3 4.1 -4.3 12.5 -0.3 8.5
CPC12S - Pooled analysis 61,341 67 1.5 -6.0 8.9 -3.7 7.5
Oxygen saturation
CPC12S - Reference Utrecht 22,993 16 1.6 -3.5 6.6 -1.8 5.0
CPC12S - Reference Stockholm 24,661 23 -1.0 -7.0 5.2 -4.6 2.7
CPC12S - Reference Aachen* 2,289 24 0.9 -4.6 6.3 2.9 4.6
CPC12S - Reference Leuven 1,255 3 0.0 -5.0 4.9 -3.9 39
CPC12S - Pooled analysis 51,198 66 0.4 -6.7 7.6 -3.1 4.0
Mean Arterial Pressure
CPC12S - Reference Utrecht 27,774 15 1.3 -31.9 34.6 -21.3 239
CPCI12S - Reference Stockholm 23,217 22 9.2 -26.0 44.5 -16.8 353
CPCI12S - Reference Aachen* 2,338 24 2.6 -32.2 37.3 -27.1 323
CPC12S - Reference Leuven 1,991 3 40.1 14.8 65.5 6.9 73.3
CPC12S - Pooled analysis 55,320 64 8.9 -30.3 54.0 -233 41.2
Temperature
CPC12S - Reference Utrecht 13,925 11 -1.0 2.7 0.7 2.3 0.3
CPC12S - Reference Stockholm 1,026 2 -0.4 NaN NaN NaN NaN
CPC12S - Reference Aachen* 2,505 21 -1.0 2.6 0.6 2.1 0.2
CPCI12S - Reference Leuven 1,874 2 -1.3 NaN NaN NaN NaN
CPC12S - Pooled analysis 19,330 36 -0.6 -1.8 1.2 -1.7 0.6

*#3-lead ECG CPC system. *CPC12S = Checkpoint Cardio 12 S system; "LoA=Limits of Agreement; ‘MEM= mixed effects model; ‘NaN = Not

a Number

pairs. Overall, the mean difference showed slight underes-
timation, with a bias of -0.6°C and LoA of -1.7 to 0.6 °C
(Fig. 2e; Table 2). Supplementary file 5 (Fig. 10a-d) illus-
trate Bland-Altman plots of each subanalyses. Figure 4c
shows a scatterplot of all temperature readings with the
majority of measurements showing a small difference.

3.6 Example of a patient measurement

In Fig. 5, a patient’s vital signs measured with both the
CPCI12S system and a reference standard during the first
four postoperative days in the ICU are illustrated. Three
important clinical events occurred during this period; (a) a
gradual increase in HR, decrease in SpO2 and subfebrile
temperature occurred and the patient was diagnosed with
pneumonia, (b) therapy was initiated with high-flow oxygen
and antibiotics administered. Respiratory insufficiency led
to intubation at the time of (c). New onset atrial fibrillation
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occurred approximately eight hours before the intubation
and can be seen as a sudden increase in HR. This example
illustrates agreement between HR and RR measurements
recorded with the CPC12S system and the wired reference
standard. Note that RR derived from the CPC12S shows
more variation compared to the reference standard, while
maintaining agreement. SpO2 readings of the CPCI12S
system overestimates SpO2 most pronounced until the sec-
ond postoperative day at midnight. Blood pressure from
the CPC12S system is not in agreement with those from
the reference monitor. Axillary temperature measurements
from the CPC12S system underestimate core temperature in
comparison to the reference standard. Trends of increasing
temperature are tracked, but numerous drops in temperature
occur, especially during the last two days. A second example
of a patient that is being continuously monitored is shown in
Supplementary file 6 (Fig. 11).
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the Bland-Altman method, and the dashed red line from mixed effects
models respectively. Bias is shown as a black line. (b) Bland-Altman
plot of the pooled analysis of all respiratory rate measurements with
few (white) to many (dark red) measurement pairs. The dashed black
line corresponds to the limits of agreement from the Bland-Altman
method, and the dashed red line from mixed effects models respec-
tively. Bias is shown as a black line. (¢) Bland-Altman plot of the
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within 20% of the reference monitor; region B contains points out-
side 20% of the reference, but not leading to unnecessary treatment.
Region C contains points leading to unnecessary treatment, region D
indicates a potentially dangerous failure to detect e.g., bradycardia or
tachycardia, and region E represents points where events are confused
(e.g., bradycardia with tachycardia) in case of heart rate measurements
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Table 3 Clarke error grid analysis to quantify clinical accuracy of all vital signs

Zone A Zone B Zone C Zone D Zone E Zone A+B

n (%) n (%) n (%) n (%) n (%) n (%)
Heart Rate
CPC12S - Reference system Utrecht 87.8 11.0 0.2 0.9 0.1 98.8
CPCI12S - Reference system Stockholm 91.4 8.6 0.0 0.0 0.0 100
CPCI12S - Reference system Aachen* 98.7 1.0 0.0 0.3 0.0 99.7
CPCI12S - Reference system Leuven 100 0.0 0.0 0.0 0.0 100
CPCI12S - Pooled analysis 98.2 1.0 0.7 0.1 0.0 99.2
Respiratory Rate
CPCI12S - Reference system Utrecht 49.4 413 2.7 5.4 1.2 90.7
CPCI2S - Reference system Stockholm 76.4 22.0 0.2 1.4 0.0 98.4
CPCI12S - Reference system Aachen* 76.0 19.9 2.5 1.2 0.4 95.9
CPCI12S - Reference system Leuven 53.0 26.2 16.8 2.0 2.0 79.2
CPCI12S - Pooled analysis 69.1 22.9 5.0 2.1 0.9 92.0

*3-lead ECG CPCI12S system. *CPC12S = Checkpoint Cardio 12 S system
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Fig. 4 (a) Scatterplot comparing measurements of the pooled analysis CPC12S system and reference systems. (c¢) Scatterplot comparing

of oxygen saturation with few (white) to many (dark red) measurement measurements of the pooled analysis of temperature with few (white)
pairs from the CPC12S system and reference systems. (b) Scatterplot to many (dark red) measurement pairs from the CPC12S system and
comparing measurements of the pooled analysis of mean arterial pres- reference systems

sure with few (white) to many (dark red) measurement pairs from the
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Fig. 5 Example of a patient that is being continuously monitored for
more than four days with the CPC12S system (red) and reference stan-
dard UMC Utrecht (blue). From top to bottom, the panels show heart
rate (HR), respiratory rate (RR), oxygen saturation (SpO2), mean arte-

4 Discussion

In this multicenter method comparison study, we analyzed a
novel multi-parameter wearable sensor designed to continu-
ously monitor the full range of vital signs in patients after
major non-cardiac surgery. Results show that the CPC12S
system can accurately measure HR with high precision.
Respiratory rate was slightly overestimated, with bias
within the predefined accepted range. Overall, SpO2 read-
ings were slightly overestimated, but this varied between
reference systems. The CPC12S system with the axillary
sensor underestimated reference core temperature measure-
ments, and the readings showed frequent transient tempera-
ture drops resulting from poor sensor-skin contact during
patient movement. Overall, accuracy of RR, SpO2 and tem-
perature measurements were considered acceptable to track
trends, but the LoA were outside the predefined accepted
range. In contrast, blood pressure measurements showed
low accuracy against all reference systems, suggesting that
the current PTT-based method of continuous BP measure-
ment is not accurate enough to be used clinically.

rial pressure (MAP) and temperature measurements. Three clinical
events occurring are marked in the lowest panel. This example shows
unfiltered data from both systems

The present study shows that for HR, the CPC12S sys-
tem provides similar monitoring agreement to wired refer-
ence standards. Few other clinical validation studies show
similarly high levels of accuracy for chest-based wireless
sensors that derive HR from ECG [23, 31]. HR derived from
ECG outperforms wearable sensors using photoplethys-
mography or ballistocardiography to derive HR, especially
during episodes of atrial fibrillation [23]. Even though the
CPC12S system slightly overestimated RR, robust readings
to track trends in patients’ physiology were obtained. Previ-
ous wearable device studies show much wider variation in
measurements of RR, implying that reliable RR readings are
more difficult to acquire than HR [23, 31, 32]. However, it
must be noted that, despite its common use in ICU-grade
monitors, thoracic impedance RR measurement cannot be
considered a gold standard— as it is influenced by factors
other than respiration, in particular patient movement. Con-
sequently, RR showed more variation in patients who were
moving or talking, and hence an unknown part of the mea-
surement error can be attributed to inherent limitations of
reference standards.
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Since 80% of desaturation episodes are missed with
intermittent spot checks on general wards [7], reliable con-
tinuous SpO2-monitoring outside high-care facilities is
highly desirable. However, little is known about the accu-
racy of medical-grade wireless sensors for continuous SpO2
monitoring, since clinical validation studies are limited. A
recent study compared vital parameters obtained during
heart catheterizations by means of a photoplethysmogra-
phy-based wristband (CardioWatch, Corsano Health, the
Netherlands) with a pulse oximeter finger clip and reported
accurately obtained SpO2 values with a bias of 0.54% nd
95% oA from —3.1% o0+4.0%.These results cannot be com-
pared to the results of SpO2 accuracy from the present study
since these measurements were obtained under ‘controlled’
conditions of heart catheterizations during a short period of
time when patients barely move [33]. Another recent study
assessed the reliability of the wearable Radius PPG system
(Masimo, Irvine, CA, USA) in recovering trauma patients
during a 30-min period at the PACU and reported a clini-
cally acceptable bias of 0.4%, simlar to our study findings,
but with 95% LoA f -2.3% to +0.1% outsde the clinically
acceptable range [34]. Most other studies have investigated
the performance of consumer-grade pulse oximeters, but
these devices are designed for manual ‘spot-checks’ rather
than continuous measurements [35-37]. As such, findings
cannot be translated to validate the continuous performance
of SpO2 monitoring with wearable devices. One study in
973 patients comparing SpO2 measurements from a smart-
watch (Apple Watch [Apple Inc, Cupertino, California]) to
medical-grade pulse oximeters, reported 95% LoA varying
fro —5.8% to +5.9% [38]. OurSpO2 resuts show narrower
LoA and did not exclude measurements during patient
movement, whereas SpO2 readings from the Apple Watch
were only obtained within time windows without motion
[38, 39]. Other studies assessing validity of medical-grade
wearable sensors for continuous SpO2 measurements were
all obtained in healthy volunteers in controlled laboratory
settings [38, 40]. A validation study during daily activities in
healthy volunteers with the medical-grade sensor that mea-
sures SpO2 from an upper arm PPG sensor (Everion [Biovo-
tion AG, Ziirich, Switzerland]) showed an underestimation
of SpO2 of > -1.1%, with LoA from —4.6% to 2.5% [38].

The accuracy of BP measurements from the CPC12S
system using PTT to derive BP was unacceptably low in
comparison to invasive arterial line measurements. Accu-
rate measurements are dependent on the presence of both
valid PPG and ECG waveforms to calculate PTT and
derive BP. Noise in the PPG signal due to motion artefacts
or other reasons for signal distortion disturb the PTT cal-
culation and consequently BP estimation. Secondly, vaso-
active drugs administered to some of the study patients
can cause vasoconstriction or vasodilatation that changes
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the peripheral resistance of the vessel walls resulting in
an apparent decrease or increase of the PTT. Third, even
though intra-arterial catheters for invasive BP measure-
ments are considered gold standard, patient movement,
blood clots or air bubbles may result in inaccurate BP read-
ings in several patients [41]. In addition, an overdamped or
underdamped arterial pressure waveform, not corrected in
time by clinicians, may have occurred which could result
in inaccurate BP readings as well. Furthermore, it is known
that non-invasive BP with an oscillometric monitor and
invasive BP measurements recorded at the same time can
be discordant [42]. For these reasons, an unknown part of
the observed difference in BP might be related to inaccurate
invasive BP readings from the reference standard rather than
the CPC12S system. However, the prototype version of this
sensor system also showed poor agreement with measure-
ments of a non-invasive blood pressure cuff in a previous
study with volunteers executing a test protocol [18], which
is in line with results from the present study. For these rea-
sons, we suggest a different clinical validation approach for
such measurements in future studies. First, measurements
with continuous invasive BP from the reference monitor
and non-invasive BP measurements from the wearable sen-
sor should be restricted to periods of minimal or no patient
motion, which might be achieved by using an accelerometer
often present in wearable sensors. Secondly, an artificial
intelligent algorithm can be used to confirm the presence of
both a valid ECG, a valid PPG waveform and to verify suffi-
cient quality of the invasive arterial blood pressure. At least
in theory, agreement between BP from the wearable sen-
sor system and an arterial line reference BP might improve.
Finally, it is conceivable— even with these modifications -
that valid PPG-based continuous blood pressure measure-
ment will only be possible in the absence of vasoactive drug
infusion, or after recalibration of the wearable sensor sys-
tem. Nonetheless, other wearable sensor systems exist that
use PTT to derive BP. According to the manufacturer, the
accuracy of the ViSi Mobile system (Sotera Wireless, Inc.
San Diego, CA, USA) consists of a mean error less than
+5 mm Hg with a SD of <8 mm Hg [43]. However, these
results were obtained in volunteers, under controlled labora-
tory conditions, and consists of few measurements recorded
with cuff based BP [44]. The Biobeat (Biobeat Technolo-
gies, Petah Tikva, Israel) wristband showed a mean bias of
-1.9 mmHg for systolic BP, but these results were evaluated
with a cuff-based 24 h ambulatory BP monitor during daily
activities in volunteers [45]. These findings can not be trans-
lated to patients at risk of clinical deterioration.
Temperature measured by CPC12S was underestimated
in comparison to the reference standard. This could partly
be explained by the difference of measuring temperature
with a thermistor in the axilla to core temperature with a
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urinary bladder catheter. The CPC12S was, however, capa-
ble of detecting trends of increasing temperature. Tran-
sient episodes of apparent low temperature (<34 ° C) are
unlikely to reflect body temperature, but could result from
sensor malposition (loss of skin contact resulting in sensor
exposure to room temperature). In addition, the tempera-
ture sensor needs time to warm up to axillary temperature
after (re)placement. Future algorithms may be designed
to automatically recognize and ignore these transient tem-
perature sensor dislocations. Since this has not been cor-
rected for in the present study, it could explain part of the
underestimation. To our knowledge, no previous study on
continuous wireless monitoring of temperature in hospital-
ized patients exists. One study validated the accuracy of a
wearable patch sensor (SensiumVitals [Sensium Healthcare
Ltd., United Kingdom]) measuring axillary temperature in
postsurgical patients and found low correlation with manu-
ally recorded tympanic measurements from the hospital’s
electronic patient record (EHR) form [46]. However, when
used by nurses as part of routine patient care, this method
is inherently flawed, since time-stamped EHR data seldom
corresponds with the actual time of manual measurements.
Even though the accuracy of the CPC12S system was not
within the predefined standard for all vital parameters, the
clinical utility is potentially high. Using a system like this in
low-care wards may inform clinicians in time to improve the
management of several adverse events which are common
in the postoperative setting, such as arrythmias, fever as a
possible early indicator of sepsis or respiratory insufficiency.
However, we need to highlight the different settings in
which the results of the present study were obtained. The
predefined accuracy boundaries chosen in this study may be
considered wide during controlled conditions, but not during
unsupervised monitoring of patients in general wards where
more variation occurs during periods of e.g., movement.
Accuracy specifications from bench tests of ICU-monitor-
ing systems are usually obtained under ‘ideal’ conditions
where comparison of beat-by-beat measurements may show
perfect concordance, but does not reflect real-life clinical
performance. In clinical practice, ICU staff looking at the
bedside monitor ‘filter’ signal disturbances or artefacts when
interpreting the patient’s condition. In addition, it is known
that reliable measurements of RR, SpO2 and BP are difficult
to acquire during periods of patient movement. Moreover,
the intended use of these new wireless and wearable sen-
sor systems is continuous monitoring to detect deteriorating
vital sign patterns over time. This differs from the monitor-
ing of critical patients in the ICU where deterioration of
vital parameters has to be detected instantly. It is therefore
unreasonable to expect continuous, wearable monitoring
systems to have similar restrictive limits of agreement as
those obtained under controlled conditions. No guidelines

exist for acceptable LoA with continuous vital signs moni-
toring devices in clinical practice i.e., including mobilized
patients as well as deteriorating patients with aggravating
vital signs. It is therefore desirable to define new acceptable
accuracy limits accounting for real-life clinical performance
settings as well as vital sign values in the abnormal physio-
logical range. In addition, future studies should focus on the
ability to reliably detect trend patterns over time, as opposed
to beat-by-beat accuracy.

The potential added value of continuous remote wire-
less patient monitoring for care processes, patient outcomes
and resource utilization is increasingly recognized [47-50].
A recent ‘before and after’ comparison study introducing a
continuous vital signs monitoring system in 4,769 medical
and surgical patients, with historical controls, reported a
reduction of one-third unplanned ICU admissions and rapid
response team calls in the intervention group [51]. Stud-
ies in patients on surgical wards report a reduction in ICU
admissions [15] and significant reduction of complications
[52] when continuous monitoring of vital signs was used
compared to intermittent spot checks. Klik of tik om tekst in
te voeren. However, current evidence of wearable wireless
continuous monitoring devices on clinical outcomes is still
sparse, since most studies are inherently limited by their ret-
rospective, before and after approach or are underpowered
to demonstrate significant impact on patient outcomes [53].
Therefore, large prospective trials are necessary to obtain
evidence of the impact of continuous vital signs monitoring
on patient outcomes.

5 Limitations

This current study has several limitations. The number of
patients studied, the observation time available for agree-
ment analysis and the sampling rate of vital signs from the
reference systems varied among the four study centers. In
addition, no data on weight and BMI were collected and as
such it is unknown whether a high BMI may affect accuracy
of the obtained parameters. However, a previous validation
study did not show different results in volunteers with a
high BMI [18]. Additionally, no separate analysis was per-
formed excluding atrial fibrillation episodes, which could
affect agreement of BP and SpO2. Furthermore, in half of
the patients, continuous temperature was not measured with
the reference standard. However, given the large amount
of monitored time and measurement pairs available, we
believe valid conclusions can be drawn regarding the reli-
ability of the CPC12S monitoring system for each of the
vital signs measured. Another limitation is the fact that the
time to intervene is quicker in HDUs/ICUs as compared to
low-care ward settings due to the higher nurse-to-patient
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ratio. Therefore, the duration of measurement pairs with
abnormal physiological values - such as a critically low
RR (<8 brpm) or periods of hypoxemia (SpO2<90%) is
likely limited. Consequently, validating continuous wear-
able monitoring systems in abnormal physiological ranges
in high-risk settings remains difficult.

No previous study exists comparing an ‘all-in-one’ vital
sign monitoring solution, capable of continuously measur-
ing HR, RR, SpO2, BP and temperature, to several refer-
ence monitoring systems in different hospital environments.
In our study, a large amount of measurement pairs was
available for analysis. This study demonstrates a high vari-
ability in measurement performance of CPC12S and the ref-
erence systems. Subanalyses from Stockholm and Aachen
show similar results, which could be explained by the fact
that both hospitals use an ICU monitoring system from
the same manufacturer. Therefore, an unknown part of the
observed measurement error might be related to variable
accuracy levels of the specific ICU monitor used as refer-
ence standard rather than the wearable monitoring system
studied [54]. This emphasizes the importance of testing new
wearable sensors against several reference systems in clini-
cal practice.

6 Conclusion

The tested CPC12S multiparameter system accurately mea-
sures HR, in comparison to wired reference standards. The
accuracy of RR and SpO2 readings were slightly overesti-
mated, with LoA outside the predefined clinical acceptable
limits. Axillary temperature measurements underestimated
core temperature and showed occasional transient drops in
readings with LoA outside the predefined acceptable lim-
its, but trends of increasing temperature were tracked and
could be useful in early detection of fever. The accuracy
of BP measurements was unacceptably low, and must be
improved. The novel approach of comparing a wireless
monitoring system to several different clinically used refer-
ence systems provides valuable insights to the performance
of such systems and could become a useful approach for
validation. It should be noted that although accuracy of such
systems is essential, usability, acceptability and costs are
important factors for consideration before implementation
in clinical practice.
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